Global constraints on net primary production and inorganic carbon supply during glacial and interglacial cycles

نویسندگان

  • Josep L. Pelegrí
  • Patricia De La Fuente
  • Roger Olivella
  • Antonio García-Olivares
چکیده

[1] Relaxation-type models have good skill at reproducing glacial-interglacial transitions in climatic variables. Here we propose a simple two-box and two-state relaxation-type model for the upper ocean (surface and permanent thermocline layers) where dissolved inorganic carbon/nutrients are supplied by the deep ocean and through remineralization within the upper ocean. The model is tuned using genetic algorithms to simulate the atmospheric CO2 time series for the last four glacial-interglacial cycles. The fit to the data is very good, with correlations above 0.8, as the upper ocean responds to shifts in (1) the intensity of the meridional overturning circulation, from off to on during the glacial-interglacial transition, and (2) the size and sign of net primary production, with respiration greatly exceeding primary production during interglacial periods and production larger than respiration during the glacial phase. The glacial-interglacial transitions are interpreted as shifts between two distinct metabolic states of the Earth system, with high/low supply of dissolved inorganic carbon and nutrients to the productive upper ocean during interglacial/glacial periods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum

Relief of iron (Fe) limitation in the Southern Ocean during ice ages, with potentially increased carbon storage in the ocean, has been invoked as one driver of glacial-interglacial atmospheric CO2 cycles. Ice and marine sediment records demonstrate that atmospheric dust supply to the oceans increased by up to an order of magnitude during glacial intervals. However, poor constraints on soluble a...

متن کامل

Influence of Equatorial Diatom Processes on Si Deposition and Atmospheric CO(2) Cycles at Glacial/Interglacial Timescales

[1] The causes of the glacial cycle remain unknown, although the primary driver is changes in atmospheric CO2, likely controlled by the biological pump and biogeochemical cycles. The two most important regions of the ocean for exchange of CO2 with the atmosphere are the equatorial Pacific and the Southern Ocean (SO), the former a net source and the latter a net sink under present conditions. Th...

متن کامل

In and out of glacial extremes by way of dust−climate feedbacks

Mineral dust aerosols cool Earth directly by scattering incoming solar radiation and indirectly by affecting clouds and biogeochemical cycles. Recent Earth history has featured quasi-100,000-y, glacial-interglacial climate cycles with lower/higher temperatures and greenhouse gas concentrations during glacials/interglacials. Global average, glacial maxima dust levels were more than 3 times highe...

متن کامل

The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum

Relief of iron (Fe) limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with consequent effects on export production and the carbon cycle. However, understanding the role of enhanced...

متن کامل

Quasi-100 ky glacial-interglacial cycles triggered by subglacial burial carbon release

A mechanism is proposed in which climate, carbon cycle and icesheets interact with each other to produce a feedback that can lead to quasi-100 ky glacial-interglacial cycles. A central process is the burial and preservation of organic carbon by icesheets which contributes to the observed glacial-interglacial CO2 change (the glacial burial hypothesis, Zeng, 2003). Allowing carbon cycle to intera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014